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ABB'rRACT 

Us ing  an  ergodic  t r a n s f o r m a t i o n  def ined on an  inf ini te  measu re  space,  we dis- 

cuss  c o m p l e m e n t s  in  7 of the  set  ~ cons i s t ing  of f ini te  sums  of o d d  powers  of 

2. 

Let Pt and B be two infinite subsets of the set of non-negative integers N. 

If every integer n G N can be written uniquely as n = a + b with a G Pt and 

b E B then Pt and B are said to be complementing subsets of N, and we write 

ft @ B = N. The structure of such subsets of N is well known; see [1] and 

[7]. However, little is known when N is replaced by the set of all integers Z. 

Some progress was made in this direction recently in [2]. It was shown in [2] 

that  the ergodic measure preserving transformation introduced in [6] belongs 

to a wide class of ergodic measure preserving transformations associated with 

complementing subsets of N. Namely, if ~ is an infinite subset of N which has an 

infinite complement B in N, then it was shown in [2] how to construct an ergodic 

measure preserving transformation that  accepted Pt as an exhaustive weakly 

wandering sequence. Subsequently, using properties of such a transformation it 

was shown how to construct a continuum number of complements of Pt in Z. 

Nevertheless, the subset Pt happens to possess many more complements in Z 

than the ones exhibited in [2]. It is possible to characterise all the complements 

in l for such a subset ~t in N. This will be done in a subsequent paper, where 

the important notion, the rank of a number, is introduced and discussed in 

connection with the subsets ~ and B of N. 

In another direction it was shown in [3] that  the example in [6] and the ergodic 

transformations discussed in [2] belong to the class of ergodk measure preserving 
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transformations of finite type. Transformations of finite type were introduced 

and discussed in some detail in [3] ; these are ergodic measure preserving trams- 

formations which admit exhaustive weakly wandering sets of finite measure. A 

set W is a weakly wandering (w.w.) set for a transformation T if there exists 

an infinite s u b s e t / I  of the integers such that  for a, a ~ E ~ and a ~ a t we have 

T~W N T~'W = ~, and W is an exhaustive weakly wandering (ex.w.w.) set for 

T if X = U ~  T~W (disj) . The corresponding set or sequence of integers ~ is 

also called w.w. or ex.w.w., respectively, for T. 

In the genera] case the collection of all w.w. sequences for a transformation T 

is clearly an isomorphism invariant, but  it is too genera] to effectively distinguish 

among ergodic measure preserving transformations defined on an infinite mea- 

sure space. The collection of all ex.w.w, sequences for a transformation T is also 

an isomorphism invariant, and in certain situations seems to be more effective 

in classifying ergodic measure preserving transformations defined on an infinite 

measure space. The transformations discussed in [2] belong to a class of trans- 

formations that  possess su/~cient regularity properties among transformations of 

finite type to make it possible for us to classify them more effectively. We leave 

the discussion of such questions to another paper [4] . 

In this article we shall concentrate on the example T discussed in [6] . We 

associate tha t  example with the sequence of integers fl  consisting of 0 and all 

finite sums of odd powers of 2 . The  sequence ~I has the complement B in N 

where B consists of 0 and all finite sums of even powers of 2. We discuss some 

properties of the transformation T and exhibit d/fferent ex.w.w, sets for the 

sequence ~.  This way we are able to shed more light on the behaviour of the 

complements C of FI in 7. The generalisation of our discussion to complementing 

subsets of N in general and to the associated class of transformations discussed 

in [2] is straight forward and except for notational complications can be carried 

through without difficulty. 

T h e  t r a n s f o r m a t i o n  T a n d  s o m e  o f  i t s  p r o p e r t i e s  

In this section we construct once more the transformation introduced in [6]. We 

shall build the measure space (X, B, m), which will be isomorphic to the infinite 

Lebesgue measure space of the real line, and build the transformation T on it 

as a cutting and stacking construction; see [5]. Next we discuss a few properties 

of the transformation T, and establish some preliminary results that  are needed 

in the next  section. We proceed to the construction of the space (X, B, m) and 
the transformation T inductively as follows: 
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S t e p n = 0  (n -- 2k, ]c -- 0). 

We start with the Lebesgue measure space of the unit interval W = [0, 1). At 

this step we have a stack, denoted by B0, which consists of one level of measure 

1 . The transformation T is not defined anywhere. 

Step n = 1 (n -- 2]c + 1,/c = 0). 

We cut the stack Bo vertically into two equal pieces, Bl0 and B~, the left and 

right halves of Bo, respectively. We place B~ on top of B~, and to the right of 

the resulting stack we add an isomorphic stack. We denote the corresponding 

pieces of the new stack by Sl0 and S~ , respectively. We obtain the following 

picture: 

Bo 

n = 0  n - - 1  

We continue inductively for n = 2, 3, 4, ... as follows: 

When n (--- 2k) is an even integer we place the stack B~_I, S~_ 1 on top of 

the stack B~_I, B~_ 1. We denote by Bk the resulting stack which consists of 

2'* levels each of measure 2 -k. We define the transformation T on Bk except on 

the top level of it by mapping a point onto the corresponding point on the level 

above it. The transformation T is thus extended from the previous step and is 

defined everywhere on the stack Bk except on the top leve~ and T -1 is defined 

everywhere on the stack Bk except on the bottom level. 

When n (= 2k÷ 1) is an odd integer, we cut the stack Bk vertically into two 

equal pieces, B~ and B~, the left and right halves of the stack Bk, respectively. 

We place B~ on top of B~, and to the right of the resulting stack we add an 

isomorphic stack. We denote the corresponding pieces of this new stack by S~ 

and S~, respectively. We obtain the picture at the top of the following page. 

Continuing in this way we obtain the measure space (X, B, m) and the ergodic 

measure preserving transformation T defined everywhere on it. We note that 

the transformation T -1 is not defined at the point 0 , the ]eft hand point of 

the set VV'. In what follows we remove from X the point 0 and all its images 

under the powers of T; then T becomes a 1 - 1 onto ergodic measure preserving 

transformation. We shall also denote by ~ the set of integers consisting of 0 and 

all finite sums of odd powers of 2, and by B the set of integers consisting of 0 

and all finite sums of even powers of 2. 
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PROPOSITION I : The se~ W = [0, I) is an ex.w.w, set under the sequence 

for ~he transfarmation T. 

Proof: In the construction of the transformation T we note that  at step n = 1 

the set W 1 = PV covers the left stack, and the set 2"2W I covers the right stack. 

At step n = 3 the set W 3 --- W 1 (3 T'2W 1 (disj) covers the left stack, and the 

set T28W 3 covers the right stack. More generally, at step n ~ 3, for n an odd 

integer, the set PV n = W"-2T2~-2W"-2 (disj) covers the left stack, and the set 

T2~W" covers the right stack. This shows that  W is an ex.w.w, set for the 

transformation T under the sequence/~. [] 

We observe that  in the construction of the transformation T and the space X, 

at step n = 2k for k = 1, 2, ..., the picture consists of 2 ~ intervals each of length 

2 -k.  We shall call each of these a dyadic interval Dh of length 2 -k.  We note 

that  for k = 0, Do = W[= [0, 1)] is the dyadic interval of length 1 ,  and it splits 

into two dyadic subintervals DI and TD1 of length 2 -1 . Moreover, for each 

one of these dyadic subintervals D there e~sts  a corresponding dyadic interval 

of length 2 -1 ; namely, ~ D .  Thus there exist a total of 2 ~ dyadic intervals 

of length 2 -1.  More generally, for k > 0, each of the 2 ~ dyadic intervals Dk 

of length 2 -k splits into two dyadic subintervals Dh+l and T2~D~+I  of length 

2 - (k+l) .  Moreover, for each one of these dyadic subintervals D there exists a 
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corresponding dyadic interval of length 2-(k+1); namely, T2"h+~D. Thus there 
exist a total of 22(h+1) dyadic intervals of length 2 -(k+l). 

For a~y subset V of X let us denote by ~ = U~A TaV .  We note that, since 

the sets TaW for a E ft axe mutually disjoint, i f / T  and D" axe two dyadic 

subintervals of W, t hen /T  N D" = ~b implies D'  n D" = ~. This fact is also true 

for any two dyadic subintervals of a dyadic interval D in X. 

PROPOSITION 2: For k > 0, Jet Dk be a dyad/c/nterva/ofjengtb 2 -k,  then 

~ '~-~  Dk = Dk. 

Proof: We prove by induction. The set Do -- W(--- [0, 1)) is the dyadic interval 

of length 1 . We note that Do -= D1 0 TD1 (disj), where D1 and TD1 axe the 

two dyadic subintervals of Do of length 2-1. Then Do = X implies 

(1) X ~--/~1 u T/~) 1 ( d i s j ) .  

Applying T to both sides of (1) we get 

(2) x = TD1 u T2DI(disj). 

If we denote by D either of the dyadic subintervals of Do then (1) and (2) imply 

T2D = D. The additional two dyadic intervats of length 2 -1 axe T 2 images of 

the corresponding dyadic subintervals of Do • This proves the Lemma for all 
dyadic intervals of length 2 -1 . 

Next we assume that the Proposition is true for all dyadic intervals DI, of 

length 2 -k. Then Dk ----- Dk+l U T22hDk+ 1 (disj), where Dk+l and T22kDk+1 
are the two dyadic subintervals of D~ of length 2 -(k+l). This implies 

(3) Dk = Dk+l uT2 'hDk+l  (disj). 

Applying T 22h to both sides of (3), since T22~-~Dk = Dk, we obtain 

2k ._.o 2k-i- I 
(4) D,  = T 2 /),+1 U :/" /3,+1 (disj). 

If we denote by D either of the dyadic subintervals of length 2 -(k+l) of Dk, then 

combining (3) and (4) we conclude T2~+ID = D. The additional dyadic inter- 

v~ls of length 2 -(k+l) axe T 22k+1 images of the corresponding dyadic subintervals 

of Dk. [] 
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For two subsets E and ~' of X and a positive integer k > 0 we shall say that 

E is at least k steps away from F if ~r~EN F = ~ for 0 <IiI < k. We note that 

it is possible for a set E to be k steps away from itself. 

PROPOSITION 3: Let U be an ex.w.w, set under the sequence g for T, and 

V a subset of U. Let U and V both be the [mite anion of  dyad/c interva/s; and 

let k > 0 be a posith, e integer. Then there exists an integer 3" > k such that  the 

set E = (U \ V) U T iV  is an ex.w.w, set under the sequence [~, and the set T i V  

is at least ]c steps away/ tom E.  

Proof: We note that  according to Proposition 1 above and Theorem 1 of [3] the 

set U is necessarily of measure 1. Since U is a finite union of dyadic intervals, by 

splitting these intervals further, we represent both  sets U and V as a finite union 

of dyadic intervals each of the same length 2 -~ for some i > 0. We choose i such 

that  2 2~ > k. Once more we refer to the construction of the transformation T 

and the space X. At step 2 / +  3 the set U is contained totally inside the left stack 

and is contained below 22~+z levels from the top of the left stack. The same holds 

true for the set V . We let 3" = 22~+s; then the set E = T~'V will be the finite 

union of dyadic intervals, and it will be contained totally inside the right stack 

and below 22~+z levels from the top of it. This says that the set TYV will be at 
least 22~+z > k steps away from U. It is clear that if we let E = (U \ V) U TiV 

then from Proposition 2 follows that X -- E. Since re(E) = 1, then Theorem 1 

of [3] implies that  E is an ex.w.w, set under the sequence/~ for T. [] 

C o m p l e m e n t s  o f  t h e  se t  FI in Z 

For any set of integers E we shall denote by E - E the set {n E Z : n = e - e' for 

e, e I E E}. In the sequel we normalize the complements C of ~ in Z by requiring 

that  0 E C. 

PROPOSITION 4: Let V be an ex.w.w, set under [~ for the transformation T. 

For any point z E V consider the set C = Cffi = {n E Z; T " z  E V}, the h i t t / -g  

times of  the point z in V .  Then I~ ~ C = 7. 

Proof: Since V is weakly wandering under ~ we have T a - a ' V N V  = ~b for a, a' E 

A , a  ~ a t. Also i fcz ,c2 E C= for z G V, then C 1 -- C2 G C y  for y = Tc2z E V. It 

follows tha t  

(1) ( A - A )  N ( C - C ) = { 0 }  for anyC--Cff i ,  z E V .  
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Next we fix z E V and let C = Cffi. Since X -- UaEA TeV (disj), it follows that  

for n E Z, T n z  E TaV for some a E / I .  Then T n - a z  E V implies n - a E C, 

or n = a + c for some a E ~ and c E C. The uniqueness of the representation 

n = a + c follows from (1). []  

According to  the above Propositions 1 and 4 ,  for any z E W it follows that  

the set Cffi = {n E Z : T'*z E W}  is a complement o f / I  in Z. Thus it is possible 

to obtain a continuum number of complements of ~t in Z. The complements 

that  are obtained in this way however, possess the following additional property 

described in the next Proposition. 

We recall the complement of the se t /1  in N, namely the set B consisting of 0 

and all finite sums of even powers of 2. 

PROPOSITION 5: Let C be a complement o£11 in Z, such that  C = Cffi = {n E 

Z : T n z  E W )  [or some z E W. Then C - C = fl - 13. 

Proo[: For any z E W let C = Cz be defined as above. We index the members of 

C such that  Co = 0 and ¢n < cn+l for n E Z; we also consider the set D = (dn}  

where dn = cn - cn-x  for n E l .  We note that  

(5.1) W = DI U TDx (disj), 

where D1 is a dyadic interval of length 1/2; 

(5.2) D1 = D2 U T 2' D2 (disj), 

where D~ is a dya~iic interval of length 1/2~; and in general for n :> 1 

(5.3) D,~ = D,,+I U T2""D,,+I (disj), 

where Dn+l is a dyadic interval of length 1/2 n+l.  

From (5.1) we conclude that  every 2nd element of D equals 1, from (5.2) we 

conclude that  every 22th element of D equals 22 - 2 °, and from (5.3) we conclude 

in general that  

(5.4) every 2nth element of D equals 22n - 22n-2 . . . . .  2 o for n _> 1. 

If we index the set B such that  b0 = 0 and bn < bn+l for n E N, and let 

D' = {dn : dn = bn - bn -x ;n  >_ 1}, then D' also has the same property (5.4) as 

above. []  
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There exist complements C of/1 in Z however, that do not have the property 

that C - C = [I - Ft. 

PROPOSITION 6: For any positive integer k > 0 there ex/sts an ex.w.w, set 

W I under the se t /1  such t h a t / o r  z E W I the set C~ = {n E l : T n z  E W'} has 

the proper ty  that  for n ~ 0 / f  n E C= - C= then In[ > k. 

Proof." In the construction of the transformation T we note that at step 2k + I 

the set W = [0, 1) splits into p = 2 k+t dyadic intervals, each one a separate 

level inside the left stack. We designate these levels Do, DI,..., Dp-z. We let 

Do be the bottom level and note that it is at least/c steps away from itself. We 

keep the set Do and inductively choose the integers 3"1 < 3"2 < "'" < 3.v-1; we 

use Proposition 3 repeatedly at each step. First we choose 3"1 > k and replace 

the set Dx by M ax DI so that the set T iI DI is at least k steps away from the set 

W U T jl DI. Next we choose ~ > 3"1 +/c and replace the set D2 by T a'~ I)2 so 

that the set T ~'* D2 is at least k steps away from the set W U T jl DI U T ~'~ D2. 

We continue this way until we replace each of the sets Di by the sets T a' D~ for 

0 < i < p, respectively. We let W ~ = Do LJ U0<i<pTa"D/. Then the set W ~ 

is ex.w.w, under the sequence/1, and W l is at least k steps away from itself. 

It follows that for z E W t the set Cz = {n E 7 : Tnz E W*} has the stated 

properties.  [] 

Thus it is possible to construct complements C of/1 in I such that C - C does 

not contain a given integer n. We note that all the complements C constructed 

so far are of the form C = Cz = {n E Z : T n z  E W ~} for almost MI z E W ~ for 

some W ~ that is ex.w.w, under/1 for T. Complements C of/1 in I obtained this 

way however, possess an additional property. To clarify this let C = {c~li E Z} 
be a set of integers such tha t  ci > ci-x f o r i  E Z. Then the set C is said 

to satisfy the block repeat  proper ty  if for any i E Z and any block of k + 1 

integers ci < c~+1 < . . .  < c~+k contained in C there exists a 3" > i such tha t  

the block of k + 1 integers cy < ci+x < . . .  < cy+k contained in C satisfy 

Ci~-p+l  - -  ¢ i + p  -~ C y + p + l  - -  C j + p  for 0 < p < k. 

The complements C of /1  in X tha t  have been constructed so far by the above 

methods possess the block repeat  proper ty  as defined above. This is an imme- 

diate consequence of the fact tha t  the t ransformation T under consideration is 

an ergodic measure preserving transformation defined on the infinite Lebesgue 

measure space of the real line. We proceed to show tha t  it is possible to construct 

complements  C of /1  in l that  do not possess the block repeat  property.  



Vol. 75, 1991 ERGODIC TRANSFORMATIONS 127 

We need the following Proposition 7 which is a slightly stronger version of 

Proposition 6 .  

PROPOSITION 7: Let  W'  be the 6si te  union o f d y a d k  intervals, and let it be 

an ex.w.w, set under ;% for T.  Let x G W I, and co,sider  the set o / in tegers  

C' = {n ~ iv : T n z  E W'} and a 6nits subset C! = { c x , " - , c n }  of C'. Then for 

any positive integer k > 0 there exists an ex.w.w, set W" u n d e r / I  such that  

x G W" ,  and the set C" = {n E iv : T n z  E W " }  has the property that  C / c  C", 

C" - C" - C" and for n E and n ~ C1 we have In I > k. 

Proo[: The proof is similar to the proof of Proposition 6 .  We let Co = 0 and 

note that  the points T ~ z  for 0 < i < n belong to the set W ~. We choose s 

large integer /c ~ > k such that  at the step 2/d -t- 1 in the construction of the 

transformation T the set W ~ splits into p dyadic intervals, each one a separate 

level inside the left stack, and such that  the points Te ' z  for 0 < i < n belong 

to different dyadic intervals. We designate these intervals by Do, D 1 , - ' - ,  Dp_ 1 

such that  the first n + 1 of these intervals Do, D1, " •, Dn, contain the points 

z, TCtz, . . .  ,TC~z, respectively. Next we chose the integers ~'n+l • in-l-2 < " ' "  < 

jp-1 such that  for each i , n  < i < p, the set TY'Di is at least k steps away from 

the set W' U TY~+a Dn+x U " .  U TY~ Di. Finally, the set W"  = Do U . .. U Dn U 

TY~+aD,+x U . . .  U TY'-~Dp_x is an ex.w.w, set under ;%. It follows that  the set 

C" = {n ~ iv : Tnz  G W"} has the stated property. [] 

PROPOSITION 8: Let 0 < kz < k2 < k s . . -  be an increasing sequence of 

positive /ntegers. Then there ex/sts a complement C of ;% in iv, where C = 

{ cn In = O, 1, 2 , . . . }  is a sequence o//ntegers with the property that  Ion l - l cn -x  [ >  

k ,  for alI n >_ l.  

Proo[: We choose the sequence C -- {chin -- 0, 1, 2 , . . . }  inductively. We let ¢0 = 

0 and enumerate Z = {zn[n -- 0, 1, 2 , . . .}  such that  X = {0, 1 , - 1 ,  2 , - 2 , . . . } .  For 

kx > 0 we use Proposition 6, choose a set Wx, and fix the point z G Wx. Then 

the set Cx = {n E Z : T~z E Wx } is a complement of ;% in Z; thus there exists 

a unique cl G CI with al + cx = 1(= zx) for a unique al E ;%. We choose el 

and note tha t  Icl] > kl. Next for ~ > 0 we use Proposition 7 and choose the 

set W2 such that  the set C2 = {n G iv : Tnz  E W2} is a complement of ;% in iv 

and cl E C2; thus there exists a unique c2 E C2 where a2 + c2 = - 1  (= z2) 

for a unique a2 G ;%; we choose c2 and note that  Ic2I -  I c l [>  k2. We continue 

by induction. Having chosen the integers C!  = { c l , . . . , c , - 1 }  for kn > 0 we 
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use Proposition 7 and choose the set Wn, such that  x E Wn, and C! c Cn 

where Cn = {i E Z : 7"~z E Wn}. Finally we choose the unique ¢n E Cn where 

cn + a,~ = zn for the unique an E/1; we note that  [c,~[- Ion-l[ > / ~ .  Continuing 

this way the set C = (chin = O, 1 , . . . )  has the stated properties. [] 

Prom the above discussions it is clear that  there are many complements C of 

/1 in Z, and moreover, it may seem that  there exist little restrictions on these 

complements. However, we are able to introduce the important notion of the 

rank or index associated with a number and describe quite fully the structure of 

these complements. For future reference we mention the rank of an integer n in 

this case as being the largest power of 2 that  divides n. For example, the sum 

{0, 28} ~ / I  is direct, i.e. each sum is unique; the same is true for (0, 52} ~ /1  and 

(0, 28, 52} ~/1 .  However, using the rank it is possible to show that  both (0, 28} 

and (0, 52} can be extended to complements of/1 in l ;  but (0, 28, 52} cannot be 

extended to any complement. 
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